Abstract
A meso-scale heat recirculating combustor was used to examine the combustion characteristics of two specific synthetic fuels. One of the fuels was made via a Fischer-Tropsch (F-T fuel) process, while the other was produced from tallow (bio-jet fuel). The two fuels were burned in the meso-scale combustor using pure oxygen in a non-premixed injection configuration. The extinction behavior at the fuel-rich and fuel-lean combustion conditions has been investigated for each fuel. The results showed that although the two fuels showed some similarities, the F-T fuel exhibited stable, non-sooting combustion behavior at higher equivalence ratios than the bio-jet fuel. The lean stability limit for the bio-jet fuel was found to be lower (lower equivalence ratio) than that of the F-T fuel. The results were compared with conventional JP-8 jet fuel to provide a comparative analysis of combustion characteristics using the same combustor. A fuel characterization analysis was performed for each fuel, and their respective thermal efficiencies calculated. The F-T and bio-jet fuels both reached a maximum thermal efficiency of about 95% near their respective rich extinction limits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.