Abstract

Dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50) and nitrocellulose/nitroglycerine (NC/NG) possess good energy properties, which were widely used in propellants, explosives and pyrotechnics. They are easy to contact with each other during their application and storage. However, their thermal characteristics under continuous heat flow have not been reported yet. Therefore, it is of great practical significance to study the thermal properties of TKX-50/NC/NG (mixture of TKX-50 and NC/NG). In this paper, the thermal characteristics and pressure behaviors of TKX-50/NC/NG, TKX-50 and NC/NG were characterized by high pressure differential scanning calorimetry (HPDSC) and adiabatic scanning calorimetry (ASC). The results showed that TKX-50 and NC/NG can promote each other to decompose under continuous heat flow, especially the thermal decomposition which affected by gases generation and heat feedback was more violent in the confined space. The decomposition peak temperature of TKX-50/NC/NG shifted to low temperature when the heat loss was ignored and the removal of decomposition gas was suppressed. The possible decomposition mechanism of TKX-50/NC/NG was speculated. It was considered that the intermediate products of TKX-50 and NC/NG decomposition under thermal stimulation would react with each other, which promoted TKX-50/NC/NG decomposition in one step at lower temperature. Thus, TKX-50 has high reactivity and high potential risk after contact with NC/NG under continuous heat flow. TKX-50 is not suitable for application with NC/NG. This study provides a reference for the structural design of nitrogen rich explosives and further broadens the researchers’ understanding of the application of TKX-50.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.