Abstract

We experimentally analyze the temperature dependence of an ytterbium-doped fiber amplifier (YDFA) operating at 1060 and 1080 nm, investigating its spectroscopic characteristics and gain properties in the temperature range of 10 to 100 °C. Our measurement indicates that the change in the operating temperature can give rise to a significant effect on the YDFA performance, which also significantly depends on the operating wavelength. At the output power level of approximately 1.5 W, the temperature change from 10 to 100 °C resulted in a signal power drop of approximately 16% at 1060 nm and 5% at 1080 nm, respectively. While this is due mainly to the temperature-dependent spectroscopic characteristics of the gain fiber, it also depends on the input signal and pump power levels. We numerically model this behavior, based on the given experimental conditions and measured fiber parameters. Our numerical results are in good agreement with the experimental results and further suggest that higher seed power to the amplifier should help in minimizing the temperature dependence of the YDFA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.