Abstract

The experiments were performed by using PF-5060 and water to investigate the thermal characteristics from an in-line 6 x 1 array of discrete heat sources for simulating the multichip module which were flush mounted on the top wall of a horizontal, rectangular channel of aspect ratio 0.2. The inlet temperature was 15°C for all experiments, and the parameters were the heat flux of simulated VLSI chips with 10, 20, 30, and 40W/cm2 and the Reynolds numbers ranging from 3,000 to 20,000. The measured friction factors for PF-5060 and water gave a good agreement with the values predicted by the modified Blasius equation within ±6%. The chip surface temperatures for water were lower by 14.4-21.5°C than those for PF-5060 at the heat flux of 30W/cm2. From the boiling curve of PF-5060, the temperature overshoot at the first heater was 3.5°C and was 2.6°C at the sixth heater. The local heat transfer coefficients for water were larger by 5.5-11.2% than those for PF-5060 at the heat flux of 30W/cm2, and the local heat transfer coefficients for PF-5060 and water reached a uniform value after the fourth row. This meant that the thermally fully developed condition was reached after the fourth row. The local Nusselt number data gave the best agreement with the values predicted by the Malina and Sparrow’s correlation and the empirical correlations for Nusselt number were provided at the first, fourth and sixth rows for a channel Reynolds number over 3,000.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.