Abstract
In situ melt pool monitoring is a set of technologies widely deployed on industrial, metals-based laser powder bed fusion (LPBF) additive manufacturing (AM) systems. This study investigates the use of a calibrated tungsten ribbon lamp as a reference standard to calibrate a photodetector based, on-axis melt pool monitoring system. Calibration demonstrates two functions: (a) enable a reference for measuring and ensuring system repeatability, and (b) enable reference to physical temperature values based on the measured photodetector signals. The second function is explored in this paper. A regression-based model is derived based on bichromatic Planck thermometry theory. The calibrated tungsten lamp is then placed within a LPBF system, and resulting photodetector signals are measured at different lamp temperature set points to calibrate the model. Finally, several additional characterization tests and their results are presented verifying the temporal response of the lamp, measurement noise as a function of sampling time, and spectroscopic measurements of the LPBF optics and their potential effect on temperature calibration. A framework is also developed to normalize temperature readings across the build plate to remove location-dependent optical artifacts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.