Abstract
Enyne-allenes 4a-c bearing various cyclopropyl systems as radical clock reporter groups at the allene terminus have been synthesized and subjected to thermal C2-C6 cyclization. The ratio of ene versus formal Diels-Alder products could be rationalized on the basis of steric effects. Only the thermolysis of 4c, equipped with the fast diphenylcyclopropylcarbinyl radical clock, afforded a 1,3-butadienyl benzofulvene clearly formed via cyclopropyl ring opening. This finding provides unambiguous evidence for a stepwise mechanism of the C2-C6 cyclization making it possible to suggest a lifetime for the intermediate diradical of >1x10(-10) s (at 170 degrees C). An interesting corollary was the isolation of an unexpected silyl shift product in the thermolysis of all three enyne-allenes that allows explanation of the loss of the TIPS group in some of the Diels-Alder products. For a full understanding of the mechanism, silyl and hydrogen shift processes were interrogated using DFT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.