Abstract

In this paper, thermal buckling properties of a nanoplate with small-scale effects are studied. Based on the nonlocal continuum theory, critical temperatures for the nonlocal Kirchhoff and Mindlin plate theories are derived. The thermal buckling characteristics are presented with different models. The influences of the scale coefficients, half-wave numbers, width ratios, and the ratios of the width to the thickness are discussed. From this work, it can be observed that the small-scale effects are significant for the thermal buckling properties. Both the half-wave number and width ratio have influence. The nonlocal Kirchhoff plate theory is valid for the thin nanoplate, and the nonlocal Mindlin plate theory is more appropriate for simulating the mechanical behaviors of the thick nanoplate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call