Abstract

Thermal buckling analysis of symmetric and antisymmetric cross-ply laminated hybrid composite plates with an inclined crack subjected to a uniform temperature rise are presented in this paper. The first-order shear deformation theory in conjunction with variational energy method is employed in the mathematical formulation. The eight-node Lagrangian finite element technique is used for obtaining the thermal buckling temperatures of hybrid composite laminates. The effects of crack size and lay-up sequences on the thermal buckling temperatures for symmetric and antisymmetric plates are investigated. The results are shown in graphical form for various boundary conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.