Abstract

The thermal buckling and postbuckling response of symmetrically laminated composite plates are discussed. Using variational methods in conjunction with a Ray-leigh-Ritz formulation, thermal buckling and postbuckling are investigated for two laminates, a ( ±45/0/90) s and a ( ± 45/02 ) s, under two different simple support conditions, fixed and sliding. These laminates are subjected to the condition of a uniform temperature change. The effects of the principal material axes not being aligned with the edges of the plate, referred to here as material axis skewing, are also investigated. Although differences between buckling temperatures for the two support conditions were small, support conditions can have a large influence on thermal postbuckling response. In general, plates with fixed simple supports defied more than plates with sliding simple supports. In addition, support conditions can influence modal interaction. Skewing of the material axis decreases the buckling temperatures of both laminates and, like fixed support conditions, causes increased postbuckling deflections. Skewing also influences modal interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call