Abstract
This paper investigates thermal buckling and postbuckling behaviors of functionally graded graphene nanoplatelet (GPL)-reinforced composite multilayer beams containing an open edge crack and resting on a Pasternak-type elastic foundation based on the first-order shear deformation beam theory including von Kármán geometric nonlinearity. The material properties of functionally graded GPL-reinforced composites (GPLRCs), which exhibit piece-wise variation along the thickness direction, are evaluated using micromechanics based models. The bending stiffness of the cracked section is estimated by the rotational spring model. The obtained nonlinear partial differential equations of equilibrium are discretized by the differential quadrature method, and then an iterative method is used to obtain the thermal buckling loads and postbuckling load-deflection curves. Detailed parametric studies are conducted to investigate the effects of crack length, GPL distribution pattern, GPL weight fraction, GPL length-to-width and length-to-thickness ratios, boundary conditions, and foundation stiffnesses on the thermal buckling loads and postbuckling response of the cracked GPLRC beams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.