Abstract

ABSTRACTThis article presents an analytical approach to investigate the buckling and postbuckling behavior of functionally graded nanocomposite plates reinforced by single-walled carbon nanotubes, resting on elastic foundations and subjected to thermal load due to uniform temperature rise or linear temperature change across the plate thickness. The material properties of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) are assumed to be temperature independent, graded in the thickness direction, and estimated by extended rule of mixture through a micromechanical model. Formulations are based on classical plate theory taking von Kármán nonlinearity, initial geometrical imperfection, Pasternak-type foundation interaction, and tangential-edge constraints into consideration. Approximate solutions of deflection and stress functions are assumed to satisfy simply supported boundary conditions, and the Galerkin method is applied to obtain closed-form expressions of buckling temperatures and temperature-deflection relations. The influences of carbon-nanotube volume fraction and distribution pattern, aspect ratios, stiffness of foundations, degree of tangential-edge constraints, and imperfection on the thermal buckling and postbuckling behavior of FG-CNTRC plates are analyzed and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call