Abstract

ABSTRACTThis article deals with the thermal buckling and postbuckling of functionally graded material (FGM) beams with surface-bonded piezoelectric actuators based on physical neutral surface concept and high-order shear deformation theory including von Kármán strain–displacement relationships. The beams are exposed to a uniform temperature field and electric field, the material properties of FGM layers are temperature-dependent and vary in the thickness direction. The approximate solutions of piezoelectric FGM beams for thermal buckling and postbuckling are obtained by a two-step perturbation method, meanwhile, the analytical solutions of Timoshenko beam model and Euler beam model are also presented. The validity of the present work can be confirmed by comparisons with previous results. The effects of the applied actuator voltage, beam geometry as well as volume fraction index of FGM beam on the critical buckling temperature, and postbuckling load–deflection relationships are investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call