Abstract

In this paper, the thermal effects on the buckling of functionally graded (FG) nanobeams subjected to various types of thermal loading including uniform, linear and non-linear temperature changes are investigated based on the nonlocal third-order shear deformation beam theory. The material properties of FG nanobeam are supposed to vary gradually along the thickness direction according to the power-law form. The governing equations are derived through Hamilton’s principle and solved analytically. Comparison examples are performed to verify the present results. Obtained results are presented for thermal buckling analysis of FG nanobeams such as the effects of the power-law index, nonlocal parameter, slenderness ratio and thermal loading in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.