Abstract

Described in the current study is the thermal buckling behavior of multi-walled carbon nanotubes (WCNTs) via a nonlocal atomistic-based shell model. The model including the effects of small-scale length and the van der Waals (vdW) forces between adjacent nanotubes is established through the incorporation of the interatomic potential into the nonlocal Flügge shell theory. This model links the strain energy density induced in the continuum to Eringen's nonlocal constitutive relations. The set of coupled field equations are analytically solved for two types of temperature distribution. The present model is of a distinguishing feature which is its independence from the widely scattered values of Young's modulus and the effective wall thickness of carbon nanotubes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call