Abstract

In this article, the buckling analysis of a double-walled carbon nanotube (DWCNT) subjected to a uniform internal pressure in a thermal field is investigated. The effects of the temperature change, the surrounding elastic medium based on the Winkler model, and the van der Waals forces between the inner and the outer tubes are considered using the continuum cylindrical shell model. The small-length scale effect is also included in the present formulation. The results show that there is a unique buckling mode corresponding to each critical buckling load. Moreover, it is shown that the non-local critical buckling load is lower than the local critical buckling load. It is concluded that, at low temperatures, the critical buckling load for the infinitesimal buckling of a DWCNT increases as the magnitude of temperature change increases whereas at high temperatures, the critical buckling load decreases with the increasing of the temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.