Abstract

This article is aimed at developing a nonclassical Mindlin rectangular functionally graded material (FGM) microplate based on the strain gradient theory (SGT) to study the thermal buckling behavior of microplates with different boundary conditions. This theory comprises material length scale parameters to interpret size effects. The developed model encompasses classical and modified couple stress Mindlin microplate models, if all the material length scale parameters or two of them are taken to be zero, respectively. The Mindlin rectangular FGM microplate is considered to be made of a mixture of metal and ceramic of which the volume fraction is described through a power low function. According to Hamilton's principle and the generalized differential quadrature (GDQ) method, the stability equations and associated boundary conditions are obtained and discretized, respectively. Current formulations provide a possibility to have all types of boundary conditions which herein, FGM microplates with three commonly used boundary conditions are considered. Three different types of thermal loads including uniform, linear and nonlinear temperature rises along the thickness of FGM microplates are considered. The dimensionless critical buckling temperature difference (DCBTD) predicted by SGT is compared with that of modified couple stress theory (CST) and classical theory (CT) which it is found that CST and CT underestimate the DCBTD. Also, effects of the boundary conditions, length scale parameter and material gradient index of FGM microplates on the DCBTD are judiciously investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call