Abstract

It is not easy to dynamically analyze thermal bridges that require multi-dimensional analysis in building energy simulations, which are mostly one-dimensional platforms. To solve this problem, many studies have been conducted and, recently, a study was conducted to model a thermal bridge based on the data obtained by approaching this in a similar way to steady-state analysis, showing high accuracy. This was an early-stage study, which is only applicable when the indoor temperature is constant. By extending the study, a thermal bridge model that can be applied even when the indoor temperature changes over time in building energy simulations is proposed and validated. Since the governing equation, the heat diffusion equation, is linear, the key idea is to create and apply two thermal bridge transfer function models by expressing the heat flow that enters the room as a linear combination of the transfer function for indoor temperature and the transfer function for outdoor temperature. For the proposed thermal bridge model, the NRMSE of the model itself showed a high accuracy of 0.001, and in the verification through annual simulation using the model, the NRMSE showed an accuracy of 0.1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.