Abstract

Advances in microelectronics technology strongly depend on the thermal optimization of metal/dielectric interfaces, which requires precise modeling and thermal characterization of metal/dielectric structures. This work experimentally investigated the influence of metallic layers on the thermal boundary resistance of silicon nitride dielectric material. The results reveal that the thermal boundary resistance of silicon nitride thin films depends on the metallic layers. The thermal boundary resistance at the interface between Au and SiNx is larger than that between Co0.9Fe0.1 and SiNx. The reasons to cause this difference are discussed with phonon transmission probability and the ratio of the Debye temperature between metals and dielectrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.