Abstract

We use classical molecular dynamics simulations to study the thermal boundary resistance (also known as Kapitza resistance) between graphene sheets (GS) either in octane or in vacuum. We found a higher value of Kapitza resistance for GS in vacuum compared to that in octane because the GS–GS interface has larger Kapitza resistance than the GS–octane interface, which is consistent with observations for carbon nanotube – carbon nanotube contacts. More importantly, the Kapitza resistance for the GS–GS contact can be 30% lower than values reported for the carbon nanotube – carbon nanotube contact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.