Abstract
The mechanism of thermally induced oxidation of Fe2+ from natural pyrope has been studied at 1000 and 1100 degreesC using Fe-57 Mossbauer spectroscopy in conjunction with XRD, XRF, AFM, QELS, TG, DTA and electron microprobe analyses. At 1000 degreesC, the non-destructive oxidation of Fe2+ in air includes the partial stabilization of Fe3+ in the dodecahedral 24c position of the garnet structure and the simultaneous formation of hematite particles (15-20 nm). The incorporation of the magnesium ions to the hematite structure results in the suppression of the Morin transition temperature to below 20 K. The general garnet structure is preserved during the redox process at 1000 degreesC, in accordance with XRD and DTA data. At 1100 degreesC, however, oxidative conversion of pyrope to the mixed magnesium aluminium iron oxide, Fe-orthoenstatite and cristoballite was observed. During this destructive decomposition, Fe2+ is predominantly oxidized and incorporated into the spinel structure of Mg(Al,Fe)(2)O-4 and partially stabilized in the structure of orthoenstatite, (Mg,Fe)SiO3. The combination of XRD and Mossbauer data suggest the definite reaction mechanism prevailing, including the refinement of the chemical composition and quantification of the reaction products. The reaction mechanism indicates that the respective distribution of Fe(2+)and Fe3+ to the enstatite and spinel structures is determined by the total content of Fe2+ in pyrope. (Less)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.