Abstract

The thermal properties of a perfluoropolyether (PFPE) W/O microemulsion were investigated by Differential Scanning Calorimetry (DSC) both on freezing the liquid samples and upon their melting. PFPE systems as a function of increasing volume fraction (Φ=water+surfactant/total), were studied along a dilution line with a water/surfactant molar ratio W/S=11. The percolative nature of these systems emerged directly from the spreading of the exothermic peaks associated with the freezing of the dispersed phase. This behaviour was found to depend on whether the starting temperature of the DSC measure was at, below or above the percolative threshold temperature of the given sample. A low temperature 'needle-like' peak was found around 143 K, immediately after the glass transition due to the oil continuous phase. The low temperature peak was also present in other percolative, three-component microemulsions. The higher order phase transition at the percolation temperature was also evidenced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.