Abstract

A new nitrogen-rich energetic material, hydrazinium 3,5-dinitroamino-1,2,4-triazole (HDNAT), was synthesized. Thermal behavior and non-isothermal decomposition kinetics of HDNAT were studied with DSC and TG/DTG methods. The non-isothermal decomposition kinetic equation is $$\frac{{{\text{d}}\alpha }}{{{\text{d}}T}} = \frac{{10^{19.37} }}{\beta }6(1 - \alpha )^{{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0pt} 3}}} [1 - (1 - \alpha )^{{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0pt} 3}}} ]^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}} \exp ( - 188.6 \times 10^{3} /RT)$$ . Self-accelerating decomposition temperature and critical temperature of thermal explosion of HDNAT are 168.1 and 178.1 °C, respectively. Specific heat capacity of HDNAT was determined with a micro-DSC method and the molar heat capacity is 258.96 J mol−1 K−1 at 298.15 K. Adiabatic time-to-explosion of HDNAT is about 100 s. The impact sensitivity, friction sensitivity, detonation velocity and detonation pressure of HDNAT are >13.1 J, 84 %, 9.0 km s–1 and 36.0 GPa, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call