Abstract

The thermal properties and transitions of solid and ground wood samples conditioned at different humidity conditions were investigated by temperature-modulated differential scanning calorimetry. A time-dependent transition was detected as an endothermic peak in the total and non-reversing heat flows and as a step change in the reversing heat flow during the first heating run of samples with moisture contents above 5 %, but it disappeared in the second heating run. These different thermal behaviors indicate that the effect of heat and moisture on the thermal properties of wood is history dependent. This step change in the reversing heat flow is considered to be a glass transition of moist wood. Other relaxation processes (e.g., enthalpy relaxation) occur simultaneously with this glass transition. The temperature ranges of the transition and the relaxation decreased drastically as the moisture content increased up to 11 %, while they remained almost constant at higher moisture contents. In addition, the transitions of the ground wood occurred at lower temperatures than those of the solid wood at similar moisture contents. Kissinger plots revealed that the apparent activation energy for the glass transition of the solid wood with a moisture content of 11 % was about 600 kJ/mol, whereas that of the ground wood was 220 kJ/mol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.