Abstract

This study examined the thermal behavior of cast gypsum specimens, with and without additives, by means of simultaneous differential thermal analysis-thermogravimetry (DTA-TG) and dilatometry. Specimens were prepared from wet-calcined hemihydrates (Hydrocal and Densite). The additives studied were boric acid (H3BO3) and sodium chloride (NaCl), and these were added to the hemihydrate powders in concentrations of 2 wt% (in the case of H3BO3) and 0.5 wt% (in the case of NaCl). A large shrinkage was observed in the range of 300 to 500 degrees C, and this was greatly reduced when either H3BO3 or NaCl was present. The dehydration of gypsum (calcium sulfate dihydrate) was not completed until the initial stage of this large shrinkage was reached, but the phase transition of calcium sulfate anhydrite (III-CaSO4 to II-CaSO4) was the major cause for the large shrinkage. This phase transition occurred over a much wider temperature range than that suggested by the DTA-TG results. Dehydration conditions similar to those employed in wet calcination of gypsum appeared to be produced under atmospheric pressure when NaCl was present.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call