Abstract

The definition as well as prediction of rock thermal behavior seems to be a quite difficult problem significantly effected by rock composition and structure. Temperature increase causes various changes of rock material (such as decomposition, oxidation, phase and polymorphic transformation, etc.). These changes are connected to thermal expansion with following appearance of tensions and cracks in minerals and rock structure. After consequential temperature decrease, developed tensions and cracks still influence the process. This study presents the application of thermogravimetric analysis, differential thermal analysis and thermomechanical analysis in characterization of selected marble thermal behavior. The texture and morphological orientation of calcite grains for marble samples was determined by optical microscopy. FTIR spectroscopy application along with X-ray diffraction (XRD) extended data about mineralogical composition. According to optical microscopy, the calcite grains show marked morphological anisotropy in one direction for some samples. Therefore, the thermal expansion had to be measured in three different (perpendicular to each other) directions. It is evident, that the effect of temperature on the final marble properties depends not only on mineralogical composition, but also on structure, texture and morphological orientation of grains. All these facts significantly influence the interpretation of differences in various marble thermal behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.