Abstract

Along with the development of the Si semiconductor industry, numerous studies have been carried out on the defects that remain after ion-implantation processes [1]. For example, in the case of high-dose (~10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">15</sup> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> ) implantation, dislocation loops can be created even after annealing. These defects are typically evaluated by transmission electron microscopy (TEM) and have been confirmed as a reason for junction leakage [2][3]. Even in low-dose (<; 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">13</sup> cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> ) implantation, some intrinsic point defects remain at relatively low annealing temperatures (<; 700 C). These defects have been conventionally analyzed and investigated by optical and electrical characterization techniques, such as photoluminescence (PL) and deep transient level spectroscopy (DLTS) [4]-[6]. In contrast, residual damage in low-dose implanted and high-temperature annealed Si has not been detected and reported. Therefore, it is believed that there is no damage remains in this condition, and, if exists, it has no influence on device performance. Little attention has been paid to the defects that remain after low-dose implantation processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call