Abstract

Natural fibers such as those from sugarcane bagasse may be obtained as industrial waste products. These fibers have recently been investigated as low-cost reinforcements in composites for engineering applications, some of which may require exposure to temperatures above ambient. In the present work, fibers extracted from sugarcane bagasse were used at up to 30 vol.% as reinforcement in polyester-matrix composites. The thermal behavior of these composites was investigated by thermogravimetric analysis (TGA) and derivative thermogravimetry (DTG) as well as dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). TGA/DTG results indicated similar limits of thermal stability at about 200°C for the neat polyester and the bagasse fiber composites. The thermal degradation peak at around 370°C was also similar, being attributed mainly to polyester. DSC analysis revealed that bagasse fiber incorporation caused only a minor change in the glass-transition temperature. On the contrary, DMA parameters revealed notable changes attributed to effect of the bagasse fibers on the viscous stiffness and damping capacity of the polyester.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.