Abstract
The thermal behavior of the following systems have been investigated by TGA and XPS: the homopolymer of N:P:Cl4(CH2)(CH2C6H4CH−CH2) (1). copolymers of1 with MMA and styrene, and copolymers of N:P:Cl4(1-C3II) [C[OC(O)CH3]−CH3] (2) with MMA and styrene. Upon heating under TGA conditions the highest char yield (64wt00) is found for the homopolymer of1. The char yields for the copolymers appear to increase with increasing amounts of phosphazene incorporated. The one-step weight loss observed for the homopolymer of1 can be ascribed mainly to climination of HCl. The1 styrene copolymers decompose in one step, indicating that HCl elimination, ring degradation, and depolymerization take place simultaneously. The1 MMA copolymers show a two-step degradation. From XPS scans it follows that complete loss of chlorine takes place in the first step and probably in combination with some depolymerization of MMA units. In the second step phosphazene ring degradation is observed, accompanied by further carbonization of the sample. The2 styrene copolymers start to decompose about 100 C lowe than the1 MMA copolymers, also exhibiting a two-step TGA curve. The first step can be associated with breakdown of polymer chains at the C−C linkage between inorganic monomers. In the second step depolymerization of the styrene sequences. HCl elimination, and ring degradation occur.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.