Abstract

Ammonium dinitramide (ADN) is a promising new oxidizer for solid propellants because of its high oxygen balance and high energy content, and halogen-free combustion products. One of the characteristics needed for solid propellants is stability. Heat, light, and moisture are factors affecting stability during storage, manufacture, and use. For practical use of ADN as a solid propellant, clarification of the mechanism of decomposition by these factors is needed to be able to predict lifetime. This study focused on thermal decomposition of ADN. Exothermal behavior of ADN decomposition was measured by isothermal tests using high-sensitive calorimetry (TAM) and non-isothermal tests using differential scanning calorimetry (DSC). Based on these results, analysis of the decomposition kinetics was conducted. The activation energy determined by TAM tests was lower than that from DSC tests. Thus, the decomposition path in TAM tests was different from that in DSC tests. The amount of ADN decomposition predicted from TAM tests was closer to that found under real storage conditions than the amount of decomposition predicted from DSC tests. Non-isothermal tests may not be able to precisely predict the lifetime of materials with a decomposition mechanism that changes with temperature, such as ADN. The lifetime predicted from DSC results was much longer than that from TAM tests especially at low temperature. It is necessary to use isothermal tests to predict the long-term stability at low temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.