Abstract

AbstractThe evolution of metric parameters of 2:1 and 3:2 mullites have been measured between 4 K and 1320 K using neutron and X‐ray powder diffraction. Negative thermal expansion was observed at low temperature for the a‐cell parameter and consequently for the cell‐volume, which is more pronounced for 2:1 mullite than those for 3:2 mullite. Each parameter is simulated using Grüneisen first‐order approximation for the zero pressure equation of state at 0 K, where the vibrational energy was calculated using microscopic approach. While the b‐ and c‐cell parameters require only one Debye term, a second Debye spectrum with negative Grüneisen parameter was required to fit the a‐cell parameter as well as the cell volume. At 4 K, 300 K and 1320 K the model, respectively, calculates the volume thermal expansion coefficients of 0.09x10−6 K−1, 9x10−6 K−1, and 17.3x10−6 K−1 for 2:1 mullite, and 0.09x10−6 K−1, 8.7x10−6 K−1, and 17.3x10−6 K−1 for 3:2 mullite. Temperature‐dependent Raman spectra and phonon density of states hint for the possible microscopic sources of the cell contraction at low temperature. A simple polynomial approach is presented to calculate the elastic stiffness coefficients of the 3:2 mullite, which are not available from experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call