Abstract
A three-dimensional finite-element heat-transfer model was established to predict temperature of hot copper plates in a slab continuous casting mold with high casting speed and the temperature distribution and effect of casting speed on thermal behavior were simulated in detail. The results show that the calculated temperature agree well with the measured ones and the temperature of hot copper surface is influenced by the flash welded chrome (Cr) layer to a certain extent. The temperature profile of hot copper surface is determined by heat flux, material properties, solidifying shell shrinkage and mold taper and presents a certain shape. Temperature distributions in different transverse sections along effective casting height of mold are all similar and depend on mold structure and contact state between mold wall and slab. The centre temperature of hot copper surface at casting speed 1.8 m·min−1 and 2.0 m·min−1 are higher than that of 1.6 m·min−1 casting speed 4.7–5.2°C and 11.2–12.2°C respectively and temperature is not increased linearly with casting speed. Temperature difference adjacent to meniscus between mold wall and shell surface is influenced obviously by casting speed and increased 4.0–6.0°C with increment of casting speed 0.2 m·min−1. Fluctuation of temperature difference in meniscus should be a main reason to deteriorate casting effectiveness as increasing casting speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.