Abstract

Graptolite–argillites (black shales) are studied as potential source of different metals. In the processing technologies of graptolite–argillites, a preceding thermal treatment is often applied. In this study, the thermal behavior of Estonian graptolite–argillite (GA) samples from Toolse, Sillamäe and Pakri areas were studied using a Setaram Labsys Evo 1600 thermoanalyzer coupled with the Pfeiffer OmniStar Mass Spectrometer. The products of thermal treatment were studied by XRD, FTIR, and SEM analytical methods. The experiments were carried out under non-isothermal conditions of up to 1200 °C at different heating rates in the atmosphere containing 79% Ar and 21% O2. The differential isoconversional Friedman method was applied for calculating the kinetic parameters. All studied GA samples are characterized with high content of orthoclase (between 38.0 and 57.3%) and quartz (between 23.8 and 35.5%), and with lower content of muscovite, jarosite, pyrite, etc. The content of organic carbon in GA samples studied varied between 7.3 and 14.2%. The results indicated that, up to 200 °C, the emission of hygroscopic and physically bound water takes place. Between 200 °C and 500–550 °C, this is followed by thermo-oxidative decomposition of organic matter. The first step of thermo-oxidation of pyrite with the emission of water, carbon and sulphur dioxide, nitrogen oxides, and different hydrocarbon fragments indicated the complicated composition of organic matter. At higher temperatures, between 550 °C and 900 °C, the transformations continued by dehydroxylation processes in clay minerals, and the decomposition of jarosite and carbonates took place. At temperatures above 1000–1050 °C, a slow increase in the emission of sulphur dioxide followed, indicating the beginning of the second step of thermo-oxidative decomposition of pyrite, which was not completed for temperatures of up to 1000 °C. Kinetic calculations prove the complicated mechanism of thermal decomposition of GA samples: for Pakri GA samples, it occurs in two steps, and for Silllamäe and Toolse GA samples, it occurs in three steps. Preliminary tests for the estimation of the influence of pre-roasting of GA samples on the solubility of different elements contained in GA at the following leaching in sulphuric acid is based on Toolse GA sample.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.