Abstract

Y2SiO5 coatings are deposited by a flame-spray technique as protection layer on SiC substrates to prevent oxidation and steam corrosion. In this research, Y2SiO5 coatings were isothermally heat treated at different temperatures and different exposure times in a laboratory environment. The thermal behaviors such as phase transformation, microstructural change and thermally grown oxide (TGO) formation have been examined by XRD, SEM, and EDS analysis. Different modes of TGO growth behavior were found at different temperatures. In addition, the mechanical properties were evaluated by a Martens hardness tester. The results show that the change of microstructure and composition is not too critical, but higher temperatures and longer heating times do lead to the formation of Y2SiO5 crystalline phases and a β-Y2O3 phase. Thus, the isothermal heat treatment improves the hardness and elastic modulus of Y2SiO5 coatings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.