Abstract

TiAl intermetallics can be considered an alternative for conventional nickel superalloys in the high-temperature application. A TBC (Thermal Barrier Coatings) with ceramic topcoat with columnar structure obtained using EB-PVD (electron beam physical vapour deposition) is currently used to protect TiAl intermetallics. This article presents the new concept and technology of TBC for TiAl intermetallic alloys. Bond coats produced using the slurry method were obtained. Si and Al nanopowders (70 nm) were used for water-based slurry preparation with different composition of solid fraction: 100 wt.% of Al, 50 wt.% Al + 50 wt.% Si and pure Si. Samples of TNM-B1 (TiAl-Nb-Mo) TiAl intermetallic alloy were used as a base material. The samples were immersed in slurries and dried. The samples were heat treated in Ar atmosphere at 1000 °C for 4 h. The outer ceramic layer was produced using the new plasma spray physical vapour deposition (PS-PVD) method. The approximately 110 μm thick outer ceramic layers contained yttria-stabilised zirconium oxide. It was characterised by a columnar structure. Differences in phase composition and structures were observed in bond coats. The coatings obtained from Al-contained slurry were approximately 30 μm thick and consisted of two zones: the outer contained the TiAl3 phase and the inner zone consisted of the TiAl2 phase. The second bond coat produced from 50 wt.% Al + 50 wt.% Si slurry was characterised by a similar thickness and contained the TiAl2 phase, as well as titanium silicides. The bond coat formed from pure-Si slurry had a thickness < 10 μm and contained up to 20 at % of Si. This suggests the formation of different types of titanium silicides and Ti-Al phases. The obtained results showed that PS-PVD method can be considered as an alternative to the EB-PVD method, which is currently applied for deposition a columnar structure ceramic layer. On the other hand, the use of nanopowder for slurry production is problematic due to the smaller thickness of the produced coating in comparison with conventional micro-sized slurries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.