Abstract

AbstractWe consider the semilinear heat equation ut = Δu + up both in ℝN and in a bounded domain with homogeneous Dirichlet boundary conditions, with 1 < p < ps where ps is the Sobolev exponent. This problem has solutions with finite‐time blowup; that is, for large enough initial data there exists T < ∞ such that u is a classical solution for 0 < t < T, while it becomes unbounded as t ↗ T. In order to understand the situation for t > T, we consider a natural approximation by reaction problems with global solution and pass to the limit. As is well‐known, the limit solution undergoes complete blowup: after it blows up at t = T, the continuation is identically infinite for all t > T.We perform here a deeper analysis of how complete blowup occurs. Actually, the singularity set of a solution that blows up as t ↗ T propagates instantaneously at time t = T to cover the whole space, producing a catastrophic discontinuity between t = T− and t = T+. This is called the “avalanche.” We describe its formation as a layer appearing in the limit of the natural approximate problems. After a suitable scaling, the initial structure of the layer is given by the solution of a limit problem, described by a simple ordinary differential equation. As t proceeds past T, the solutions of the approximate problems have a traveling wave behavior with a speed that we compute. The situation in the inner region depends on the type of approximation: a conical pattern is formed with time when we approximate the power up by a flat truncation at level n, while for tangent truncations we get an exponential increase in time and a diffusive spatial pattern. © 2003 Wiley Periodicals, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call