Abstract

The major source of heat from the sun is solar energy, with enormous use of photovoltaic technology, solar power plates, photovoltaic lights and pumping solar water. This time is about the analysis of solar radiation and how the efficiency of solar aircraft may be improved by using solar radiation and nanotechnology. The study is intended to develop analyses of solar aircraft hybrid nanofluid transfer via parabolic trough surface collector solar wings. Solar radiative flow was named the heat source. The heat transfer efficiency of the wings is evaluated for various phenomena such as a slanted magnetic field, Joule heating, play heat and thermal radiative flow. The entropy production study was carried out in the instance of the tangent hyperbolic fluid. The modelled energy and momentum formulas were controlled with the well-established Keller box numerical technique. This work consists of ethylene glycol standard fluid with two differing types of nanosolid particles copper and silver. Different control factors for velocities, shear stress and temperature are addressed and shown in the figures and tables as well as surface friction and heat transport rate. In terms of thermal transfer, the efficacy of the aviation wings with thermal radiation amplification and changeable thermal conduction parameters is enhanced. Hybrid nanofluid is an ideal source of heat transmission compared to conventional nanofluids. Silver–copper/ethylene glycol thermal efficiency is reduced between 2.6% and 4.4% than copper–ethylene glycol nanofluid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.