Abstract
This study presents an experimental stack-level thermal and hydrodynamic assessment of a model air-cooled PEM fuel cell. To mimic the heat generation inside the MEA, rubber heater films are used. Pressure drop along the stack channels and temperature distribution on the bipolar plate surface are measured for the channel Reynolds number range of 200-500 and the stack input power range of 100-250W. Tests are performed with and without gas diffusion layers (GDL) to investigate the effect of GDL and its surface characteristics on the pressure drop and heat transfer. Our results indicate that, with the existing length of bipolar plates, a major part of plate minichannel is filled with the developing region. This leads to a higher heat transfer rates, thus more uniform stack temperature can be obtained with the penalty of higher fan power. The minimum measured temperature difference is about 10°C and the values become more pronounced when the Reynolds number decreases. The existence of the GDL is observed to have negligible effect on the pressure drop.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.