Abstract
The crystallinity of Si/SiNx multilayers annealed by a rapid thermal process and furnace annealing is investigated by a Raman-scattering technique and transmission electron microscopy. It is found that the crystallization temperature varies from 900 °C to 1000 °C when the thickness of a-Si:H decreases from 4.0 nm to 2.0 nm. Raman measurements imply that the high crystallization temperature for the a-Si:H sublayers originates from the confinement modulated by the interfaces between a-Si:H and a-SiNx:H. In addition to the annealing temperature, the thermal process also plays an important role in crystallization of a-Si sublayers. The a-Si:H sublayers thinner than 4.0 nm can not be crystallized by furnace annealing for 30 min, even when the annealing temperature is as high as 1000 °C. In contrast, rapid thermal annealing is advantageous for nucleation and crystallization. The origin of process-dependent crystallization in constrained a-Si:H is briefly discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Applied Physics A: Materials Science & Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.