Abstract

Catalytic ozonation has gained considerable interest in volatile organic compound (VOC) elimination due to its mild reaction conditions. However, the low activity and mineralization rate of VOCs over catalysts hinder its practical application. Herein, a series of α-MnO2 nanowire catalysts were prepared via thermal annealing treatment at various temperatures to tailor defect species. Numerous characterization techniques were used and combined to investigate the relationship between activity and microstructure. PALS and XAFS indicated that more unsaturated manganese and oxygen vacancies, especially surface oxygen vacancy clusters, were produced in α-MnO2 under the optimal high calcination temperature. As a result, MnO2-600 was found to exhibit the best-ever performance in toluene conversion (95%) and mineralization rate (89.5%) at 20 °C, making it a promising candidate for practical use. The roles of these defects in manipulating the reactive oxygen species of α-MnO2 were clarified by quantifying the amounts of reactive oxygen species by quenching experiments and density functional theory calculations. 1O2 and ·OH species generated in the vicinity of oxygen vacancy clusters, especially the dimer oxygen vacancy cluster, were identified as key oxygen species in the abatement of toluene. This study provides a facile method to engineer the microstructure of MnO2 by means of the manipulation of oxygen vacancies and an in-depth understanding of their roles in the catalytic ozonation of VOC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.