Abstract

An alpha particle-irradiated MIS device made of AuTa2O5GaAs was used to study how thermal annealing affects the I-V characteristics and how the current changes with annealing temperature, radiation energy, and voltage biassing. The super-gate of the MIS structure was made by using thermal evaporation to build a 1000°A thick layer of gold under a vacuum of about 10-5 torr. At room temperature, the devices were exposed to alpha particles from the radioactive source 226Ra (0.5 Ci) with energies of 5.1, 4, 3, 1.8, and 1.2 MeV for 0–30 minutes. After 30 minutes of annealing at 150, 200, and 300 o C in a vacuum of 10-3 torr, the current-voltage (I-V) characteristics of the irradiation devices were found. During thermal annealing, different results were seen with bias voltages of 0.4, 1, and 2 V and temperatures of 150, 200, and 300 o C. Annealing the device at 150 o C doesn't change how stable it is, but annealing it at 300 o C causes ohmic conduction in the device's properties. The device's current can be fixed best when the device is heated to 200 o C and then cooled. Also, thermal annealing seems to have different effects on the I–V electrical characteristics of the devices depending on the energy of the particles and the voltage biassing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.