Abstract

The magnetoimpedance (MI) effect in Fe73.5Si13.5B9Nb3Cu1 melt-spun amorphous ribbons has been studied in the frequency range (1–500 MHz). Isothermal heating treatments in a furnace have been employed to nanocrystallize the ribbons (1 h at 565 °C in a vacuum of 10–3 mbar), while other samples were annealed at lower temperatures (400 and 475 °C during 1 h), in order to evaluate the influence of the annealing temperature on the MI effect. The high-frequency impedance was measured using a technique based on the reflection coefficient measurements of a specific transmission line by using a network analyzer. Frequency dependence of the MI ratio, ΔZ/Z, and both resistive, ΔR/R, and reactive, ΔX/X, components of magnetoimpedance were measured in the amorphous and annealed states, at different temperatures. A maximum value of the MI ratio of about 50% at a driving frequency of 18 MHz is obtained in the nanocrystalline (annealed at 565 °C) ribbon. Maxima for R/R of about 81% at 85 MHz and ΔX/X around 140% at 5 MHz were also achieved. It is revealed that the microstructural evolution in the nanocrystalline sample leads to a magnetic softening, an optimum domain structure and a permeability which is sensitive to frequency and applied magnetic field, generating a large MI response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.