Abstract

A shortcoming of diamond-like carbon (DLC) films is the poor stability of their microstructure and properties at elevated temperatures. In this study, the effect of annealing on the stability of DLC films alloyed with silicon and deposited on steel is investigated. A comprehensive study of the mechanical properties is carried out by a novel method combining normal indentations with micro- and macroindentors assisted by finite element calculations of the indentation. The mechanical properties of the layers are correlated to structural changes in the film and to interface reactions. While it has become a common practice to determine hardness and the Young's modulus of thin films by nanoindentation and to calculate residual stresses from the bending of the film/substrate system, evaluation of the interface toughness, which is a measure of adhesion, and of the film rupture strength is less straightforward. Here, Hertzian-type ring cracks are generated in the film by nanoindentation of the film/substrate system with spherical diamond tips. From the critical load for crack generation the film rupture strength is deduced using finite element calculations. Similarly, Rockwell C hardness tests in combination with calculations are performed to measure the interface toughness. Applying these methods to DLC films on steel, it has been found that the Young's modulus decreases with increasing silicon content and the residual stress drops below 1 GPa. The rupture strength approaches its theoretical limit of E/10. Annealing at 500 °C reduces the adhesion energy significantly. The variation of mechanical properties can be attributed to structural changes in the film as investigated by Raman spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.