Abstract
We show that an analogue of the (four dimensional) image sum method can be used to reproduce the results, due to Krasnikov, that for the model of a real massless scalar field on the initial globally hyperbolic region IGH of two-dimensional Misner space there exist two-particle and thermal Hadamard states (built on the conformal vacuum) such that the (expectation value of the renormalised) stress-energy tensor in these states vanishes on IGH. However, we shall prove that the conclusions of a general theorem by Kay, Radzikowski and Wald still apply for these states. That is, in any of these states, for any point b on the Cauchy horizon and any neighbourhood N of b, there exists at least one pair of non-null related points (x,x'), with x and x' in the intersection of IGH with N, such that (a suitably differentiated form of) its two-point function is singular. (We prove this by showing that the two-point functions of these states share the same singularities as the conformal vacuum on which they are built.) In other words, the stress-energy tensor in any of these states is necessarily ill-defined on the Cauchy horizon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.