Abstract

ABSTRACTThis paper evaluates some basic functional properties of iron-millscale-reinforced ceramic matrix composites (CMCs) as potential material for automobiles and aircraft brake pads’ application. The particulate CMCs were produced by the powder metallurgy method. Iron millscale particles’ addition varied from 3 to 18 wt.% in a matrix comprising a mixture of silica, magnesia and bentonite. After sintering, the composites were subjected to coefficient of friction (COF), wear, thermal and microstructural characterizations. Microstructure of the composites showed a uniform distribution of millscale particles in the ceramic matrix with a strong interfacial bonding between the particles. The composites demonstrated a comparatively high resistance to wear, appreciable COF (0.506–0.561) and a modest thermal conductivity (0.39–0.53 W/m K) coupled with high thermal stability. Contributions to these superlative performances were provided by the high level of friction induced on composites’ surfaces and strong interfacial bonding developed during sintering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.