Abstract

The effect of the single, site-specific interstrand cross-link formed by cisplatin or transplatin on the thermal stability and energetics of a 20-base pair DNA duplex is reported. The cross-linked or unplatinated 20-base pair duplexes were investigated with the aid of differential scanning calorimetry, temperature-dependent UV absorption, and circular dichroism. The cross-link of both platinum isomers increases the thermal stability of the modified duplexes by changing the molecularity of denaturation. The structural perturbation resulting from the interstrand cross-link of cisplatin increases entropy of the duplex and in this way entropically stabilizes the duplex. This entropic cross-link-induced stabilization of the duplex is partially but not completely compensated by the enthalpic destabilization of the duplex. The net result of these enthalpic and entropic effects is that the structural perturbation resulting from the formation of the interstrand cross-link by cisplatin induces a decrease in duplex thermodynamic stability, with this destabilization being enthalpic in origin. By contrast, the interstrand cross-link of transplatin is enthalpically almost neutral with the cross-link-induced destabilization entirely entropic in origin. These differences are consistent with distinct conformational distortions induced by the interstrand cross-links of the two isomers. Importantly, for the duplex cross-linked by cisplatin relative to that cross-linked by transplatin, the compensating enthalpic and entropic effects almost completely offset the difference in cross-link-induced energetic destabilization. It has been proposed that the results of the present work further support the view that the impact of the interstrand cross-links of cisplatin and transplatin on DNA is different for each and might also be associated with the distinctly different antitumor effects of these platinum compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.