Abstract

In this work, polypropylene (PP) matrix reinforced with several single-walled carbon nanotubes (SWNTs) concentrations were prepared by a melt-mixing method. The effect of SWNTs on the thermal degradation behavior of polypropylene was studied by thermal gravimetric analysis. The results revealed that adding the SWNTs into the PP can increase the decomposition temperature. The results obtained from differential scanning calorimetry showed that incorporating SWNTs reduced the crystallinity but increased the crystallization temperature of the PP. The mechanical measurements showed that the tensile modulus of the nanocomposite was greatly enhanced to 882 MPa, compared to 485 MPa for pristine PP. For wide-angle X-ray diffraction tests, two cooling methods were used. The addition of SWNTs to the polymer in slow-cooled samples resulted in partial crystallization in the γ -form, while SWNTs had no effect in water-cooled samples, the sample crystallizing in the α -form. Scanning electron microscopy observations on the fracture surface of the nanocomposites showed the dispersion of the SWNTs in the nanocomposites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call