Abstract
In the core meltdown severe accident, in-vessel retention (IVR) of molten core debris by external reactor vessel cooling (ERVC) is an important mitigation strategy. During the IVR strategy, the core debris forming a melt pool in the reactor pressure vessel (RPV) lower head (LH) will produce extremely high thermal and mechanical loadings to the RPV, which may cause the failure of RPV due to over-deformation of plasticity or creep. Therefore, it is necessary to study the thermomechanical behavior of the reactor vessel LH during IVR condition. In this paper, under the assumption of IVR-ERVC, the thermal and structural analysis for the RPV lower head is completed by finite element method. The temperature field and stress field of the RPV wall, and the plastic deformation and creep deformation of the lower head are obtained by calculation. Plasticity and creep failure analysis is conducted as well. Results show that under the assumed conditions, the head will not fail due to excessive creep deformation within 200 hours. The results can provide basis for structural integrity analysis of pressure vessels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.