Abstract

This paper describes study on the procedure of raising the reactor thermal power and the reactor coolant flow rate during the power-raising phase of plant startup for the supercritical water-cooled fast reactor (SWFR), which is selected as one of the Generation IV reactor concepts. Since part of the seed fuel assemblies and all the blanket fuel assemblies of the SWFR are cooled by downward flow, the feedwater from the reactor vessel inlet nozzle to the mixing plenum located below the core is distributed among these fuel assemblies and the downcomer. The flow rate distribution as the function of both the reactor thermal power and the feedwater flow rate, which are the design parameters for the power-raising phase, is obtained by the thermal hydraulic calculations. Based on the flow rate distribution, thermal analyses and thermal–hydraulic stability analyses are carried out in order to obtain the available region of the reactor thermal power and the feedwater flow rate for the power-raising phase. The criteria for the “available” region are the maximum cladding surface temperature (MCST) and the decay ratio of thermal–hydraulic stability in three “hot” channels; two seed assemblies with upward/downward flow and a blanket assembly. The effects of various heat transfer correlations and axial power distributions are also studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.