Abstract
In this paper, a 400 ppm aqueous solution of guar gum polysaccharide was submitted to a turbulent flow regime in order to monitor molecular degradation and drag reduction. Guar gum samples were isolated and analyzed by spectroscopic, thermoanalytical and viscosimetric techniques. The drag reduction promoted by guar gum is compromised as the polysaccharide undergoes degradation. Viscosimetric analysis of guar gum showed a reduction in viscous molecular mass. Mid-infrared spectra and hydrogen nuclear magnetic resonance suggest that mechanical degradation promotes hydrolysis of the glycosidic bond α (1 → 6) releasing (d)-galactose owing to the appearance of the carbonyl functional group. Thermal analysis revealed the reduction of the polysaccharide's thermal stability by reduction of the polymer chain. A comprehensive analysis of these combined parameters affords a foundation for the development of more efficient biopolymers in the context of improved drag reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.