Abstract

We investigated the cooling of a lava flow in the steady state considering that lava rheology is pseudoplastic and dependent on temperature. We consider that cooling of the lava is caused by thermal radiation at the surface into the atmosphere and thermal conduction at the channel walls and at the ground. The heat equation is solved numerically in a 3D computational domain. The fraction of crust coverage is calculated under the assumption that the solid lava is a plastic body with temperature dependent yield strength. We applied the results to the Mauna Loa (1984) lava flow. Results indicate that the advective heat transport significantly modifies the cooling rate of lava slowing down the cooling process also for gentle slope.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.